Approximation of an Entire Function

A. R. Reddy
Department of Mathematics, University of Maryland, College Park, Maryland 20740

Communicated by J. L. Walsh

Received January 21, 1969

Let $f(x)$ be a real valued continuous function on $[-1,1]$ and let

$$
E_{n}(f) \equiv \inf _{p \in \pi_{n}}\|f-p\|, \quad n=0,1,2 \ldots
$$

where the norm is the maximum norm on $[-1,1]$ and π_{n} denotes the set of all polynomials with real coefficients of degree at most n. Bernstein ([1], p. 118) proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{n}^{1 / n}(f)=0 \tag{1}
\end{equation*}
$$

if, and only if, $f(x)$ is the restriction to $[-1,1]$ of an entire function.
Let $f(z)$ be an entire function, and let

$$
M(r)=M_{f}(r)=\max _{|z|=r}|f(z)|
$$

then the order ρ, lower order λ, type τ and lower type ω of $f(z)$ are defined by

$$
\begin{align*}
\lim _{r \rightarrow \infty} \sup \inf \frac{\log \log M(r)}{\log r} & =\begin{array}{l}
\rho \\
\lambda
\end{array} \\
\lim _{r \rightarrow \infty} \sup \frac{\log M(r)}{r^{\rho}} & =\tau \tag{2}\\
\omega & (0 \leqslant \lambda \leqslant \rho \leqslant \infty), \\
\omega & (0 \leqslant \omega \leqslant \tau \leqslant \infty)
\end{align*}
$$

(For the definitions of τ and ω, we require that $0<\rho<\infty$).
Bernstein ([1], p. 114) has shown that there exists a constant $\rho>0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup n^{1 / o} E_{n}^{1 / n}(f) \tag{3}
\end{equation*}
$$

is finite if, and only if, $f(x)$ is the restriction to $[-1,1]$ of an entire function of order ρ and some finite type τ.

Recently, Varga ([8], Theorem 1) has proved that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{n \log n}{\log \left[1 / E_{n}(f)\right]}=\rho \tag{4}
\end{equation*}
$$

where ρ is a nonnegative real number if, and only if, $f(x)$ is the restriction to $[-1,1]$ of an entire function of order ρ.

In Theorems 2 and 4, we extend the above results of Bernstein and Varga to the lower order and lower type of an entire function. We also give a short proof of Varga's theorem.

The above results suggest that the rate at which $E_{n}^{1 / n}(f)$ tends to zero depends on the order and type of the entire function f. If an entire function is either of order $\rho=0$ or of order $\rho=\infty$, then we cannot expect satisfactory results similar to (3) and (4). We shall deal, in Section I, with the case $\rho=\infty$ by assuming that there exists a positive integer $k \geqslant 2$, for which

$$
\lim _{r \rightarrow \infty} \sup \frac{l_{k+1} M(r)}{l_{1} r}=\begin{align*}
& \rho(k) \tag{5}\\
& \lambda(k)
\end{align*}
$$

are finite and positive. Here we have used the familiar notation

$$
l_{k} x=\log \log \cdots(k \text { times }) x, \quad(k=1,2,3, \ldots) .
$$

Note that $l_{k} x>0$ for all sufficiently large positive x. An entire function $f(z)$ with $\rho(k-1)=\infty$ and $\rho(k)<\infty$ is called an entire function of index k. Thus, $\rho(k)$ and $\lambda(k)$ extend the definitions of ρ and λ in (2), which correspond to $k=1$. If $\rho(k)$ is positive and finite, we can, as usual, associate with it functionals $\tau(k, f)=\tau(k)$ and $\omega(k, f)=\omega(k)$, defined by

$$
\lim _{r \rightarrow \infty} \sup \inf \frac{l_{k} M(r)}{r^{\rho(k)}}=\begin{array}{r}
r(k) \tag{6}\\
\omega(k)
\end{array} .
$$

The object of Section I is to study the relationship of $\rho(k)$ and $\tau(k)$ with the rate of growth of $E_{n}^{1 / n}(f)$. Finally, we obtain the results of Bernstein and Varga as special cases of Theorems 1 and 3.

In Section II, a classification is introduced for the class of all entire functions of order $\rho=0$, by means of the logarithmic order ρ_{l} and the corresponding logarithmic lower order λ_{l}. They are defined by

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\text {inf }} \frac{\log \log M(r)}{\log \log r}=\stackrel{\rho_{l}}{\lambda_{l}} . \tag{7}
\end{equation*}
$$

This leads to theorems analogous to those valid for ρ. If ρ_{l} is larger than one and finite, we can define the logarithmic type of f, τ_{l}, and the corresponding lower type, ω_{l} by

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log M(r)}{(\log r)^{o_{l}}}=\frac{\tau_{l}}{\omega_{l}} . \tag{8}
\end{equation*}
$$

The main object of Section II is to investigate the relationship of the logarithmic order ρ_{l} and the corresponding logarithmic type τ_{l} with the asymptotic behavior of $E_{n}^{1 / n}(f)$.

We need, for our purpose, the following lemma
Lemma 1. ([4], Theorems 1 and 4(b)). A necessary and sufficient condition that $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of index k, is that

$$
\lim _{n \rightarrow \infty} \sup \frac{n l_{k} n}{\log \left|1 / a_{n}\right|}=\rho(k)
$$

Lemma 2A. ([7], Theorem 1A) Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of index k. Then

$$
\lim _{n \rightarrow \infty} \inf \frac{n l_{k} n}{\log \left|1 / a_{n}\right|} \leqslant \lambda(k)
$$

Lemma 2B. ([7], Theorem 1B) Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of index k, such that $\left|a_{n-1} / a_{n}\right|$ is nondecreasing for $n>n_{0}$. Then

$$
\lim _{n \rightarrow \infty} \inf \frac{n l_{k} n}{\log \left|1 / a_{n}\right|} \geqslant \lambda(k)
$$

Lemma 3. ([6], Theorems 2 and 5) A necessary and sufficient condition that $f(z)=\sum^{\infty} a_{n} z^{n}$ be an entire function of index k, with $\rho(k)>0$, is that

$$
\lim _{n \rightarrow \infty} \sup \frac{n}{\rho e}\left|a_{n}\right|^{\rho / n}=\tau
$$

and

$$
\lim _{n \rightarrow \infty} \sup \left(l_{k-1} n\right)\left|a_{n}\right|^{\rho(k) / n}=\tau(k), \quad k=2,3, \ldots
$$

Lemma 4A. ([7], Theorem) Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of index k, with $\rho(k)>0$. Then

$$
\lim _{n \rightarrow \infty} \inf \frac{n}{\rho e}\left|a_{n}\right|^{\rho / n} \leqslant \omega,
$$

and

$$
\lim _{n \rightarrow \infty} \inf \left(l_{k-1} n\right)\left|a_{n}\right|^{\rho(k) / n} \leqslant \omega(k), \quad k=2,3, \ldots
$$

Lemma 4B. ([7]) Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of index k, with $\rho(k)>0$, such that $\left|a_{n-1} / a_{n}\right|$ is nondecreasing for $n>n_{0}$. Then

$$
\lim _{n \rightarrow \infty} \inf \frac{n}{\rho e}\left|a_{n}\right|^{\rho / n} \geqslant \omega
$$

and

$$
\lim _{n \rightarrow \infty} \inf \left(l_{k-1} n\right)\left|a_{n}\right|^{p(k) / n} \geqslant \omega(k), \quad k=2,3,4, \ldots
$$

Lemma 5. ([4], Theorems 1 and 3) A necessary and sufficient condition that $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of finite logarithmic order ρ_{l} (which is necessarily $\geqslant 1$), in that

$$
\lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \left\{1 / n \log \left|1 / a_{n}\right|\right\}}=\rho_{l}-1
$$

Lemma 6A. ([4], Theorem 3A) Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of finite logarithmic lower order λ_{l} (necessarily $\geqslant 1$). Then

$$
\lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \left\{1 / n \log \left|1 / a_{n}\right|\right\}} \leqslant \lambda_{l}-1 .
$$

Lemma 6B. ([4], Theorem 3B) Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of finite logarithmic lower order λ_{l}, such that $\left|a_{n-1} / a_{n}\right|$ is nondecreasing for $n>n_{0}$. Then

$$
\lim _{n \rightarrow \infty} \inf \frac{\log n}{\log \left\{1 / n \log \left|1 / a_{n}\right|\right\}} \geqslant \lambda_{l}-1
$$

Lemma 7. ([5], Theorems 1,2) A necessary and sufficient condition that $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of logarithmic order $\rho_{l}\left(1<\rho_{l}<\infty\right)$, is that

$$
\lim _{n \rightarrow \infty} \sup \frac{\left\{n / \rho_{\rho}\right\}^{\rho_{l}}}{\left\{\frac{\log \left|1 / a_{n}\right|}{\rho_{l}-1}\right\}^{\rho_{l}-1}}=\tau_{l}
$$

Lemma 8A. ([5], Theorems 1A and 2A) Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of logarithmic order $\rho_{l}\left(1<\rho_{l}<\infty\right)$. Then

$$
\lim _{n \rightarrow \infty} \inf \frac{\left\{n / \rho_{l}\right\}^{o_{l}}}{\left\{\frac{\log \left|1 / a_{n}\right|}{\rho_{l}-1}\right\}^{\rho_{l}-1}} \leqslant \omega_{l}
$$

Lemma 8B. ([5], Theorems 1A and 2B) Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ be an entire function of logarithmic order $\rho_{l}\left(1<\rho_{l}<\infty\right)$, such that $\left|a_{n-1} / a_{n}\right|$ is nondecreasing for $n>n_{0}$. Then

$$
\lim _{n \rightarrow \infty} \inf \frac{\left\{n / \rho_{l}\right\}^{\rho_{l}}}{\left\{\frac{\log \left|1 / a_{n}\right|}{\rho_{l}-1}\right\}^{\rho_{l}-1}} \geqslant \omega_{l}
$$

Section I

Theorem 1. Let $f(x)$ be a real valued continuous function on $[-1,1]$ and let k be a positive integer. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{n l_{k} n}{l_{1}\left[1 / E_{n}(f)\right]}=\sigma \tag{9}
\end{equation*}
$$

satisfies $0<\sigma<\infty$ if, and only if, $f(x)$ is the restriction to $[-1,1]$ of an entire function of index k, with $\rho(k)=\sigma$.

Proof. First, assume that $f(x)$ has an entire extention $f(z)$ of index K with $0<\sigma=\rho(k)<\infty$. Following Bernstein's original proof, we have ([2], p. 78), for each $n \geqslant 0$,

$$
\begin{equation*}
E_{n}(f) \leqslant \frac{2 B(\sigma)}{\sigma^{n}(\sigma-1)} \quad \text { for every } \quad \sigma>1 \tag{10}
\end{equation*}
$$

where $B(\sigma)$ is the maximum of the absolute value of $f(z)$ on E_{σ}, and E_{σ} ($\sigma>1$) denotes the closed interior of the ellipse with foci at ± 1, major semi-axis $\sigma^{2}+1 / 2 \sigma$ and minor semi-axis $\sigma^{2}-1 / 2 \sigma$. Then,

$$
D_{1}(\sigma) \equiv\left\{z| | z \left\lvert\, \leqslant \frac{\sigma^{2}-1}{2 \sigma}\right.\right\} \subset E_{\sigma} \subset D_{2}(\sigma) \equiv\left\{z| | z \left\lvert\, \leqslant \frac{\sigma^{2}+1}{2 \sigma}\right.\right\}
$$

From this inclusion, it follows by definition that

$$
\begin{equation*}
M_{f}\left(\frac{\sigma^{2}-1}{2 \sigma}\right) \leqslant B(\sigma) \leqslant M_{f}\left(\frac{\sigma^{2}+1}{2 \sigma}\right) \quad \text { for all } \quad \sigma>1 \tag{11}
\end{equation*}
$$

From this, one can verify easily, for $k=1,2, \ldots, j=0,1,2, \ldots$, that

$$
\begin{equation*}
\underset{\lambda(k, j)}{\rho(k, j)}=\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{l_{k+j} M(\sigma)}{l_{j+1} \sigma}=\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{l_{k+j} B(\sigma)}{l_{j+1} \sigma} . \tag{12}
\end{equation*}
$$

The numbers $\rho(k, j), \lambda(k, j)$ defined by (12), satisfy

$$
\begin{aligned}
\rho(1,1) \\
\lambda(1,1)
\end{aligned}=\begin{aligned}
& \rho_{l}, \\
& \lambda_{l}, \\
& \\
& \\
& \\
& \rho(k, 0)
\end{aligned}=\begin{aligned}
& \rho(k, 0) \\
& \lambda(k) \\
& \lambda(2,0)
\end{aligned}={ }_{\lambda} .
$$

From (10), we have

$$
\begin{equation*}
E_{n}(f) \leqslant C B(\sigma) / \sigma^{n}, \tag{13}
\end{equation*}
$$

where $C=2 / \sigma-1$. From (13), we obtain for each $\eta>0$,

$$
\begin{align*}
\sum_{k=0}^{\infty} E_{k}(f) \sigma^{k} & \leqslant \sum_{k=0}^{\infty} C \frac{B(\sigma+\eta)}{(\sigma+\eta)^{k}} \sigma^{k}=C B(\sigma+\eta) \sum_{k=0}^{\infty}\left(\frac{\sigma}{\sigma+\eta}\right)^{k} \\
& \leqslant \frac{C B(\sigma+\eta)(\sigma+\eta)}{\eta} . \tag{14}
\end{align*}
$$

It is known ([8], (12) that

$$
\begin{equation*}
B(\sigma)=E_{0}+2 \sigma \sum_{k=0}^{\infty} E_{k} \sigma^{k}, \tag{15}
\end{equation*}
$$

where E_{k} is a nonincreasing sequence of real numbers. Consider the entire function

$$
\begin{equation*}
H(\sigma)=\sum_{k=0}^{\infty} E_{k} \sigma^{k} . \tag{16}
\end{equation*}
$$

We have, from (14) and (15),

$$
\begin{equation*}
B(\sigma) \leqslant C^{\prime} \sigma H(\sigma) \leqslant C^{\prime \prime} \sigma(\sigma+\eta) B(\sigma+\eta), \tag{17}
\end{equation*}
$$

where $C^{\prime}, C^{\prime \prime}$ are some constants. From (12) and (17) we can verify that

$$
\begin{equation*}
\underset{\lambda(k, j)}{\rho(k, j)}=\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{l_{k+j} B(\sigma)}{l_{j+1} \sigma}=\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{l_{k+j} H(\sigma)}{l_{j+1} \sigma} . \tag{18}
\end{equation*}
$$

Applying Lemma 1 to $H(\sigma)$, we obtain the required result (9).
Remark. For $k=1$, Theorem 1 gives Varga's result.
Theorem 2A. Let $f(x)$ be a real valued continuous function on $[-1,1]$. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of index k, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{n l_{n} n}{\log \left[1 / E_{n}(f)\right]} \leqslant \lambda(k) . \tag{19}
\end{equation*}
$$

Proof. From (12) and (18), we have

$$
\lim _{\sigma \rightarrow \infty} \inf l_{k+1} H(\sigma) / l_{1} \sigma=\lambda(k) .
$$

Now, applying Lemma 2A to $H(\sigma)$, we have the required result.

Theorem 2B. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of index k, and if $E_{n-1}(f) / E_{n}(f)$ is nondecreasing for $n>n_{0}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{n l_{k} n}{\log \left[1 / E_{n}(f)\right]} \geqslant \lambda(k) . \tag{20}
\end{equation*}
$$

Proof. From (12) and (18), we have

$$
\lambda(k)=\lim _{\sigma \rightarrow \infty} \inf l_{k+1} H(\sigma) / l_{1} \sigma .
$$

Applying Lemma 2B to $H(\sigma)$, we have (20).
Theorem 3. Let $f(x)$ be a real valued continuous function on $[-1,1]$, and let k be a positive integer. Then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sup n E_{n}^{\rho / n}(f)=(\rho e \tau) 2^{-\rho} \text { and, if } k>1 \\
& \lim _{n \rightarrow \infty} \sup \left(l_{k-1} n\right) E_{n}^{\rho(k) / n}(f)=\tau(k) 2^{-\rho(k)} \tag{21}
\end{align*}
$$

are finite if, and only if, $f(x)$ is the restriction to $[-1,1]$ of an entire function of index k, with $\rho(k)>0$ and $\tau(k)$ finite.

Proof. We have, from (11) and (17),

$$
\begin{equation*}
2^{-\rho(k)} \lim _{\sigma \rightarrow \infty} \sup \frac{l_{k} M(\sigma)}{\sigma^{\alpha(k)}}=\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{l_{k} B(\sigma)}{\sigma^{\rho(k)}}=\lim _{\sigma \rightarrow \infty} \sup \frac{l_{k} H(\sigma)}{\inf ^{\rho(k)}} . \tag{22}
\end{equation*}
$$

Applying Lemma 3 to $H(\sigma)$, we obtain (21).
Remark. For $k=1$, we obtain Bernstein's result on the finiteness of (3).
Theorem 4A. Let $f(x)$ be a real valued continuous function on $[-1,1]$. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of index k, with $\rho(k)>0$ and $\omega(k)>0$, then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \inf n E_{n}^{\rho / n}(f)<\infty \quad \text { and, if } \quad k>1, \\
& \lim _{n \rightarrow \infty} \inf \left(l_{k-1} n\right)\left\{E_{n}(f\}^{\rho(k) / n}<\infty .\right. \tag{23}
\end{align*}
$$

Proof. We have from (22),

$$
\lim _{\sigma \rightarrow \infty} \inf l_{k} H(\sigma) / \sigma^{\rho(k)}=\omega(k) 2^{-\rho(k)}
$$

Applying Lemma 4A to $H(\sigma)$, we have (23).
Theorem 4B. Let $f(x)$ be a real valued continuous function on $[-1,1]$. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of index k, with $\rho(k)>0$ and $\omega(k)>0$, and if $E_{n-1}(f) / E_{n}(f)$ is nondecreasing for $n>n_{0}$, then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \inf n E_{n}^{\rho / n}(f)>-\infty \quad \text { and, if } \quad k>1 \\
& \lim _{n \rightarrow \infty} \inf \left(l_{k-1} n\right)\left\{E_{n}(f)\right\}^{\rho(k) / n}>-\infty \tag{24}
\end{align*}
$$

Proof. This follows from (22), by applying Lemma 4B to $H(\sigma)$.
Second Proof of Varga's Theorem. A proof of this theorem can be carried out exactly like that of Theorem 1 of Okamura ([3], p. 133), but with one difference. In our proof, we use the inequality $E_{n}(f) \sigma^{n} \leqslant C B(\sigma)$ together with (12), while Okamura uses the inequality $\left|a_{n}\right| r^{n} \leqslant M(r)$ and the definition of order of an entire function.

Section II

TheOrem 5. Let $f(x)$ be a real valued continuous function on $[-1,1]$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{\log n}{\log \left\{(1 / n) \log \left[1 / E_{n}(f)\right]\right\}}=\alpha \tag{25}
\end{equation*}
$$

satisfies $0 \leqslant \alpha<\infty$ if, and only if, $f(x)$ is the restriction to $[-1,1]$ of an entire function of logarithmic order $\rho_{l}=1+\alpha$.

Proof. We have, from (18),

$$
\rho_{l}=\rho(1,1)=\lim _{\sigma \rightarrow \infty} \sup l_{2} H(\sigma) / l_{2} \sigma
$$

Applying Lemma 5 to $H(\sigma)$, we obtain (25).

TheOREM 6A. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of logarithmic lower order λ_{l}, where λ_{l} is a finite number (necessarily $\geqslant 1$), then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{l_{1} n}{l_{1}\left\{1 / n l_{1}\left[1 / E_{n}(f)\right]\right\}} \leqslant \lambda_{l}-1 \tag{26}
\end{equation*}
$$

Proof. We have, from (18),

$$
\lambda(1,1)=\lambda_{l}=\lim _{\sigma \rightarrow \infty} \inf l_{2} H(\sigma) / l_{2} \sigma .
$$

Applying Lemma 6A to $H(\sigma)$, we have the required result.
Theorem 6B. Let $f(x)$ be a real valued continuous function on $[-1,1]$, which is the restriction to $[-1,1]$ of an entire function of logarithmic lower order $\lambda_{l}, \lambda_{l} \geqslant 1$, and let $E_{n-1}(f) / E_{n}(f)$ be nondecreasing for $n>n_{0}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{l_{1} n}{l_{1}\left\{1 / n l_{1}\left[1 / E_{n}(f)\right]\right\}} \geqslant \lambda_{l}-1 . \tag{27}
\end{equation*}
$$

Proof. Applying Lemma 6B to $H(\sigma)$, we have the required result.
Theorem 7. Let $f(x)$ be a real valued continuous function on $[-1,1]$. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of logarithmic order $\rho_{l}>1$, with $\tau_{l} \geqslant 0$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{\left\{n / \rho_{1}\right\}^{\rho_{2}}}{\left\{-\log E_{n}(f) /\left(\rho_{l}-1\right)\right\}^{a_{l}-1}} \tag{28}
\end{equation*}
$$

is finite.
Proof. From (11) and (17), observing that $1<\rho_{l}<\infty$, we have

$$
\begin{align*}
& \tau_{l} \tag{29}\\
& \omega_{l}
\end{align*}=\lim _{\sigma \rightarrow \infty} \sup \frac{\log M(\sigma)}{(\log \sigma)^{\rho_{l}}}=\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log B(\sigma)}{(\log \sigma)^{\rho_{l}}}=\lim _{\sigma \rightarrow \infty} \sup \frac{\log H(\sigma)}{(\log \sigma)^{\rho_{l}}}
$$

Applying Lemma 7 to $H(\sigma)$, we have (28).
TheOrem 8. Let $f(x)$ be a real valued continuous function on $[-1,1]$. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of logarithmic order $\rho_{l}>1$. With $\omega_{l}>0$, then

$$
\lim _{n \rightarrow \infty} \inf \frac{\left\{n / \rho_{l}\right\}^{\rho_{l}}}{\left\{-l_{1} E_{n}(f) / \rho_{l}-1\right\}^{\rho_{l}-1}}<\infty
$$

Proof. We have from (29).

$$
\begin{aligned}
& \tau_{l} \\
& \omega_{l}
\end{aligned}=\lim _{\sigma \rightarrow \infty} \sup _{\inf } l_{1} H(\sigma) /\left(l_{1} \sigma\right)^{\rho_{l}} .
$$

Applying Lemma 8A to $H(\sigma)$, we have the result.

Theorem 8B. If $f(x)$ is the restriction to $[-1,1]$ of an entire function of logarithmic order $\rho_{l}>1$ and of finite logarithmic lower type ω_{l}, such that $E_{n-1}(f) / E_{n}(f)$ is nondecreasing for $n>n_{0}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \frac{\left\{n / \rho_{\}^{\prime}}^{\rho_{l}}\right.}{\left\{-l_{1} E_{n}(f) /\left(\rho_{l}-1\right)\right\}^{\rho_{t}-1}} \geqslant 0 . \tag{30}
\end{equation*}
$$

Proof. We have, from (29),

$$
\omega_{l}=\lim _{\sigma \rightarrow \infty} \inf \log H(\sigma) /(\log \sigma)^{\rho_{l}} .
$$

Applying Lemma 8B to $H(\sigma)$, we obtain (30).

Added in proof: Lemmas stated here are slightly different from the original sources.

Acknowledgments

I thank Professors G. G. Lorentz, H. S. Shapiro, and J. L. Walsh for their suggestions in the preparation of this paper.

References

1. S. N. Bernstein, "Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle," Gauthier-Villars, Paris, 1926.
2. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart and Winston, New York, 1966.
3. H. Okamura, Sur les coefficients de Taylor des fonctions entieres d'ordre fini, Tohoku Math. J. 38 (1933), 129-144.
4. A. R. Reddy, On entire Dirichlet series of zero order, Tohoku Math. J. 16 (1966), 144-155.
5. A. R. Reddy, On entire Dirichlet series of zero order (II) (to appear).
6. A. R. Reddy, On entire Dirichlet series of infinite order (I), Rev. Math. His. Amer. 27 (1967), 120-131.
7. A. R. Reddy, On entire Dirichlet series of infinite order (II), Rev. Math. His. Amer. 29 (1969), 215-231.
8. R. S. Varga, On an extention of a result of S. N. Bernstein, J. Approx. Theory 1 (1968), 176-179.
