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Let f(x) be a real valued continuous function on [—1, 1] and let

E(f)=inflf—pl, n=012.,

where the norm is the maximum norm on [—1, 1] and m, denotes the set of all
polynomials with real coefficients of degree at most n. Bernstein ([1], p. 118)
proved that

lim E3"(f) = 0 M

if, and only if, f(x) is the restriction to [—1, 1] of an entire function.
Let f(z) be an entire function, and let

M(r) = My(r) = max | f(2)};

then the order p, lower order A, type 7 and lower type w of f(z) are defined by

lim SUP log log M(r)

=P < <
roo inf  logr A Os ASp < ),

lim WP LB M) _ 7 < ) 2)
r-o inf re w

(For the definitions of 7 and w, we require that 0 << p < c0).
Bernstein ([1], p. 114) has shown that there exists a constant p > 0 such
that

lim sup n*?EX"( ) 3

is finite if, and only if, f(x) is the restriction to [—1, 1] of an entire function of
order p and some finite type 7.
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APPROXIMATION OF AN ENTIRE FUNCTION 129

Recently, Varga ([8], Theorem 1) has proved that

. nlogn
P g IE, (7] — P @

where p is a nonnegative real number if, and only if, f(x) is the restriction to
[—1, 1] of an entire function of order p.

In Theorems 2 and 4, we extend the above results of Bernstein and Varga
to the lower order and lower type of an entire function. We also give a short
proof of Varga’s theorem.

The above results suggest that the rate at which EX"(f) tends to zero
depends on the order and type of the entire function f. If an entire function is
either of order p = 0 or of order p = oo, then we cannot expect satisfactory
results similar to (3) and (4). We shall deal, in Section I, with the case p = o0
by assuming that there exists a positive integer k£ > 2, for which

- sup L M) _ (k)
L ®)

are finite and positive. Here we have used the familiar notation
lix = log log --- (k times) x, k=1,2,3,.).

Note that /;x > O for all sufficiently large positive x. An entire function f(z)
with p(k — 1) = oo and p(k) < oo is called an entire function of index k.
Thus, p(k) and A(k) extend the definitions of p and A in (2), which correspond
to k = 1. If p(k) is positive and finite, we can, as usual, associate with it
functionals 7(k, f) = 7(k) and w(k, f) = w(k), defined by

sup LM(r) (k)
M0 inf T (k) ©)

The object of Section I is to study the relationship of p(k) and (k) with the
rate of growth of EL"(f). Finally, we obtain the results of Bernstein and
Varga as special cases of Theorems 1 and 3.

In Section II, a classification is introduced for the class of all entire
functions of order p = 0, by means of the logarithmic order p, and the
corresponding logarithmic lower order A; . They are defined by

im SUP log log M(r) _ P )
~w» inf loglogr A
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This leads to theorems analogous to those valid for p. If p; is larger than one
and finite, we can define the logarithmic type of £, 7; , and the corresponding
lower type, w; by
sup log M(r) =,
= inf (logr)r ~— w;’

®)

The main object of Section II is to investigate the relationship of the
logarithmic order p; and the corresponding logarithmic type =, with the
asymptotic behavior of EX"(f).

We need, for our purpose, the following lemma

LeMMA 1. ([4], Theorems 1 and 4(b)). 4 necessary and sufficient condition
that (z) = Y4 a,z" be an entire function of index k, is that

. nhn
PSP og T/, 1 — A0

LeEMMA 2A. (7], Theorem 1A) Let f(z) = Z:,o a,z" be an entire function
of index k. Then

. nlkn

LEMMA 2B. ([7], Theorem 1B) Let f(z) = Yy a,z" be an entire function
of index k, such that | a,_,/a, | is nondecreasing for n > ny. Then

lim inf

nlan
i T, = M0

LemMa 3. ([6], Theorems 2 and 5) A necessary and sufficient condition
that f(z) = Y * a,z" be an entire function of index k, with p(k) > 0, is that

. n
lim sup — | g, [?/* = 7,
no>o pe

and
}'ig sup(lp_yn) | a, |P%" = +(k), k=223,..

LEMMA 4A. ([7), Theorem) Let f(z) = 34 a,z" be an entire function of
index k, with p(k) > 0. Then

. . n
liminf — | q, " < w,
n-eo Pe

and
lijg inf(l,_yn) | @, 1"®/" < w(k), k=223,....
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LeMMA 4B. ([7]) Let f(z) = 3, a.z" be an entire function of index k,
with p(k) > 0, such that | a, ,/a, | is nondecreasing for n > ny. Then

. . n
liminf — | a, |°/* > o,
now Pe

and
}Lrg inf(l,_4n) | a, 1°®/* = w(k), k=2134,...

LemMmaA 5. ([4], Theorems 1 and 3) A necessary and sufficient condition
that f(z) = Z:f a,z" be an entire function of finite logarithmic order p, (which
is necessarily >1), in that

lim su log 7

NI SUP e mlog | e, Pt 1

LEMMA 6A. ([4], Theorem 3A) Let f(z) = 35 anz" be an entire function
of finite logarithmic lower order A, (necessarily >1). Then

.. logn
<A— 1
N ol i nTog [ Tapy = 7!

LEMMA 6B. ([4], Theorem 3B) Let f(z) = 34 anz" be an entire function
of finite logarithmic lower order A, , such that | a,_,/a, | is nondecreasing for
n>ny. Then

.. logn
= — 1.
N i e Tog [ Tayy = ™ 7

LemMA 7. ([5]), Theorems 1, 2) A necessary and sufficient condition that
f(z) = X anz" be an entire function of logarithmic order p, (1 < p, < ), is
that

- {n/p}”! _
,lll—g.} sup z log | 1/a, | o~ Ty~
p—1

LemMMA 8A. ([5], Theorems 1A and 2A) Let f(z) = Y a,z" be an entire
Junction of logarithmic order p, (1 < p, << ). Then

C s {n/p.}°
,132 inf : Tog | 1/a, |1 < wy.

p—1
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LemMA 8B. ([5], Theorems 1A and 2B) Let f(z) = Y, a,z" be an entire
function of logarithmic order p; (1 < p; << ), such that | a,_4/a, | is non-
decreasing for n > ny . Then

L {n/py”
=
'111}2 inf 2 fog | 1/a, snl_l = wy.
pr—1
SECTION 1

THEOREM 1. Let f(x) be a real valued continuous function on [—1, 1] and
let k be a positive integer. Then

. nlan _
AP IE] ®

satisfies 0 < ¢ < oo if, and only if, f (x) is the restriction to [—1, 1] of an entire
Sfunction of index k, with p(k) = o.

Proof. First, assume that f(x) has an entire extention f(z) of index K with
0 < ¢ = p(k) < . Following Bernstein’s original proof, we have ([2],
p. 78), for each n > 0,

2B(0)
E,,(f) < m for every o > 1, (10)
where B(c) is the maximum of the absolute value of f(z) on E,, and E,
(o > 1) denotes the closed interior of the ellipse with foci at 41, major
semi-axis o + 1/20 and minor semi-axis 0*> — 1/2¢. Then,

o2+ 1
Z‘|z|< .

Dyo) = {2 | 121 < T | CE,C Do) =

leg

From this inclusion, it follows by definition that

forall o > 1. (11)

0'2—1)

20 s 1)

M; ( 20

< Bo) < M; |
From this, one can verify easily, for k = 1,2,...,j = 0, 1, 2,..., that

p(ks]) 1 sup l]c+jM(0') T sup lk+jB(0')
Mo = e T L M e (12)
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The numbers p(k, j), A(k, j) defined by (12), satisfy
p(LY) _p plk,0) _ plk)

ML,D ~ A Ak, 0) Ak

P2, 0) —
A2, 0)

From (10), we have

E(f) < CB(o)/o", (13)

where C = 2/c — 1. From (13), we obtain for each n > 0,

T o S S e
< CB(s + :)7)(0 +m) (14)
It is known ([8}, (12) that
B(o) = E, + 20 f E,o*, (15)

where E, is a nonincreasing sequence of real numbers. Consider the entire
function

H(o) = Y Exo*. (16)

k=0

We have, from (14) and (15),
B(g) < C'oH(o) < C"0(0 + m) B(o + 1), an
where C’, C” are some constants. From (12) and (17) we can verify that

P(k;]) __ hm sup lk-H'B(a) —_— hm Sup lk-H'H(o) . (18)

A(k,]) T ot inf lj+10' o»o Inf lj+10'

Applying Lemma 1 to H(o), we obtain the required result (9).

Remark. For k = 1, Theorem 1 gives Varga’s result.

THEOREM 2A. Let f(x) be a real valued continuous function on [—1, 1]. If
f(x) is the restriction to [—1, 1] of an entire function of index k, then

lim inf "

i e < ®- (19

640/3/2-2
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Proof. From (12) and (18), we have
llyi_,lg inf I, ., H(o)/lio = A(k).

Now, applying Lemma 2A to H(o), we have the required result.

THEOREM 2B. If f(x) is the restriction to [—1, 1] of an entire function of
index k, and if E,_i( f)/E.(f) is nondecreasing for n > nq , then

.. nlan
P gl ~ @0
Proof. From (12) and (18), we have

AMk) = 51}2 inf I, ., H(0)/l;0.
Applying Lemma 2B to H(o), we have (20).

THEOREM 3. Let f(x) be a real valued continuous function on [—1, 1], and
let k be a positive integer. Then

lirg sup nES™(f) = (per)2*and, if k> 1,

@1
lim sup(lyyn) E;9(f) = = (k) 229

are finite if, and only if, f (x) is the restriction to [—1, 1] of an entire function of
index k, with p(k) > 0 and (k) finite.

Proof. We have, from (11) and (17),

o) 1o SUP 5xM(0) _ . sup LB(o) _ 1 SUP H(o)
2 },1_,‘2 inf "o LL‘E.! inf ~go® 3,‘3.} inf “or®

(22)

Applying Lemma 3 to H(c), we obtain (21).

Remark. For k = 1, we obtain Bernstein’s result on the finiteness of (3).

THEOREM 4A. Let f(x) be a real valued continuous function on [—1, 1). If
f(x) is the restriction to [—1, 1] of an entire function of index k, with p(k) > 0
and w(k) > 0, then

}11_13 inf nES"™(f) < o and, if &k > 1,

o @3
Lim inf(l_yn{E(f}®/" < co.
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Proof. We have from (22),

!71—{2 inf [ H(0)/o*®) = w(k) 2",

Applying Lemma 4A to H(c), we have (23).

THEOREM 4B. Let f(x) be a real valued continuous function on [—1, 1].
If f(x) is the restriction to [— 1, 1] of an entire function of index k, with p(k) > 0
and w(k) > 0, and if E, _(f)/E.(f) is nondecreasing for n > ny , then

lim inf nE;"(f) > —0  and, if k> 1,

. (24)
lim inf(Z_ n{E(f)}*P/" > — 0.

Proof. This follows from (22), by applying Lemma 4B to H(o).

Second Proof of Varga's Theorem. A proof of this theorem can be carried
out exactly like that of Theorem 1 of Okamura ([3], p. 133), but with one
difference. In our proof, we use the inequality E,(f) o™ << CB(c) together
with (12), while Okamura uses the inequality |a,|r™ << M(r) and the
definition of order of an entire function.

SecTioN 11

THEOREM 5. Let f(x) be a real valued continuous function on [—1, 1]. Then

lim su log n =
ae P Tog{(1/n) 108l /EL /)]

o (25)

satisfies 0 << o << oo if, and only if, f(x) is the restriction to [—1, 1] of an entire
Sfunction of logarithmic order p, = 1 + a.

Proof. We have, from (18),
pr=pl,1) = ll_)lg sup LH(o)/ly0.
Applying Lemma 5 to H(o), we obtain (25).

THEOREM 6A. If f(x) is the restriction to [—1, 1] of an entire function
of logarithmic lower order A, , where A, is a finite number (necessarily >>1), then

L. hLn .
ol ECHT S T 26)
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Proof. We have, from (18),

(1, 1) = X, = lim inf LH(0)/ho.

Applying Lemma 6A to H(c), we have the required result.

THEOREM 6B. Let f(x) be a real valued continuous function on [—1, 1], which
is the restriction to [—1, 1] of an entire furction of logarithmic lower order
AL, A =1, and let E,_(f)/E.(f) be nondecreasing for n > n, . Then

lim inf hn

n-w ll{l/n ll[l/En(f)]}

> Al e 1. (27)

Proof. Applying Lemma 6B to H(o), we have the required result.

THEOREM 7. Let f(x) be a real valued continuous function on [—1,1]. If
f(x) is the restriction to [—1, 1] of an entire function of logarithmic order
pi > 1, withT; = 0, then

. {n/pi}"
B SUP T log B 1) — D @)

is finite.

Proof. From (11) and (17), observing that 1 < p; < co, we have

U _ i SUP log M(o) — lim SUP log B(o) _ lim SUP log H(a)_ (29)

w; o= inf (logo)t o= inf (logo): o= inf (log o)
Applying Lemma 7 to H(o), we have (28).
THEOREM 8. Let f(x) be a real valued continuous function on [—1, 1]. If

f(x) is the restriction to [—1, 1] of an entire function of logarithmic order
p. > 1. With w, > 0, then

. {n/pJ™
M it e e — Tyt <

Proof. We have from (29).

0.,

™ — lim Sl‘;? LH(0)/(Lo)".

w; o

Applying Lemma 8A to H(c), we have the result.



APPROXIMATION OF AN ENTIRE FUNCTION 137

THEOREM 8B. If f(x) is the restriction to [—1, 1] of an entire function of
logarithmic order p, > 1 and of finite logarithmic lower type w,, such that
E, () E.(f) is nondecreasing for n > ny , then

- (nlp
i e — D = (30)

Proof. We have, from (29),

w; = llg} inf log H(o)/(log o).

Applying Lemma 8B to H(c), we obtain (30).

Added in proof: Lemmas stated here are slightly different from the original sources.
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